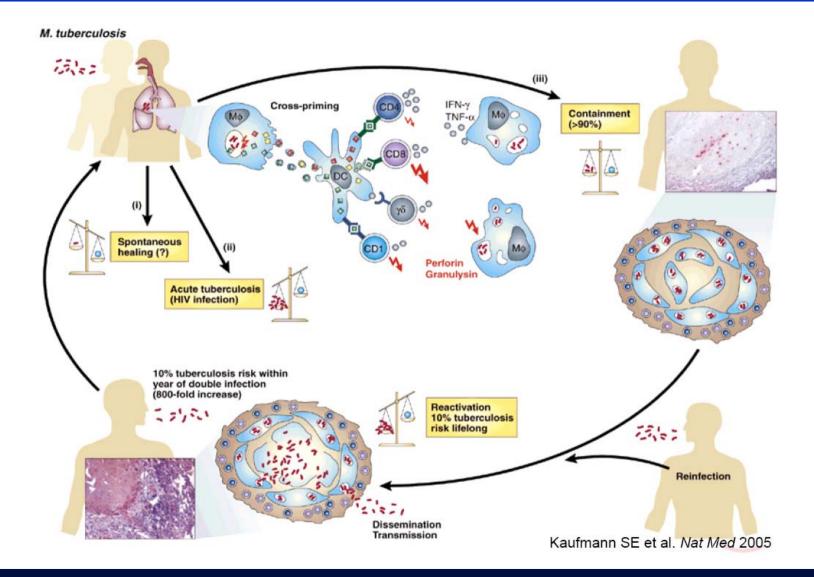
LA TUBERCOLOSI NEL SOGGETTO IMMUNOCOMPROMESSO

Zoboli Giuliana, Giacomo Magnani


Unità Operativa di Malattie Infettive Az. Ospedaliera "Santa Maria Nuova" di Reggio Emilia

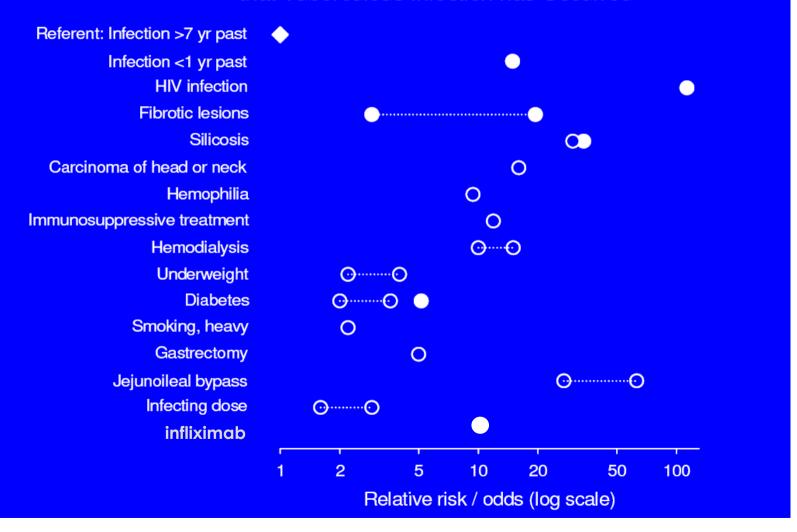
Scandiano (Reggio Emilia), 19 dicembre 2008

Evoluzione dell'infezione tubercolare

Esposizione a Non infezione: caso contagioso MTB viene eliminato dai Fondamentale è il macrofagi alveolari (mφ) Infezione: rapporto tra attività battericida dei mø e MTB prolifera nello spazio virulenza dei bacilli extracellulare e vengono reclutate cellule infiammatorie Fondamentale è 10% va incontro a Nel 90% dei casi le l'immunità cellulomalattia attiva entro cellule T controllano mediata 1-2 anni l'infezione, che rimane subclinica TB attiva e sintomatica Rischio molto Infezione latente (90%) maggiore negli (10%)MTB controllato dal sistema immunodepressi: Riattivazione immunitario per tutto il resto della - 20% negli HIV 10% di rischio durante - 10-20% negli altri vita

il resto della vita

Persons More Likely to Progress From LTBI to TB Disease


- HIV-infected persons
- Those with a history of prior, untreated TB or fibrotic lesions on chest RX
- Underweight or malnourished persons
- Those receiving TNF-α antagonists for treatment of RA or Crohn's disease

Persons More Likely to Progress From LTBI to TB Disease

Persons with following medical conditions:

- Silicosis
- Diabetes mellitus
- Chronic renal failure or on hemodialysis
- Solid organ transplantation (e.g., heart, kidney)
- Carcinoma of head or neck
- **■**Gastrectomy or jejunoilial bypass

Selected Risk Factors for Tuberculosis Given that Tuberculous Infection has Occurred

TB/HIV

Global TB/HIV Epidemiology 2006

Estimated # new TB cases:

HIV-infected TB cases

9.2 million 700,000

Estimated # prevalent cases: million

14.4

Estimated # deaths:

HIV-infected TB deaths

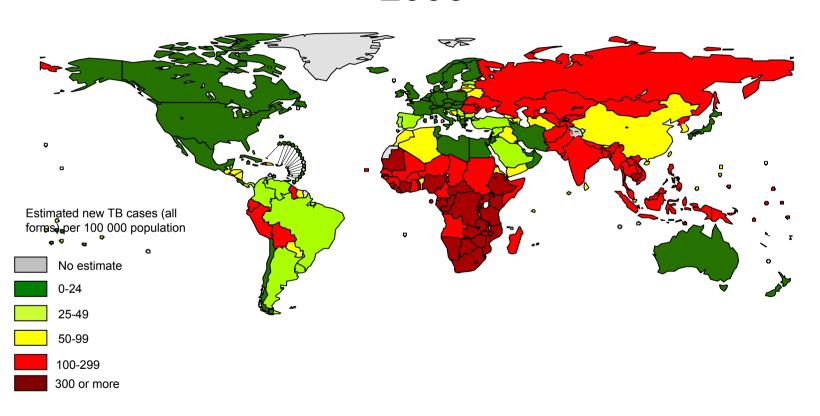
1.7 million 195,000

Estimated # infections:

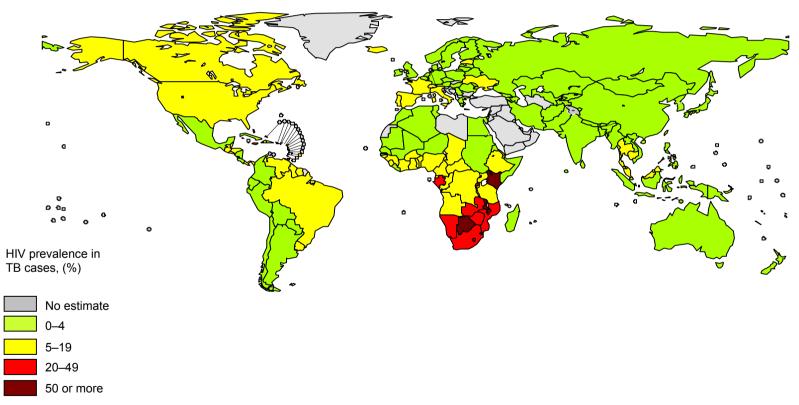
2 billion

- 33% of population

HIV/AIDS and TB: a Coepidemic

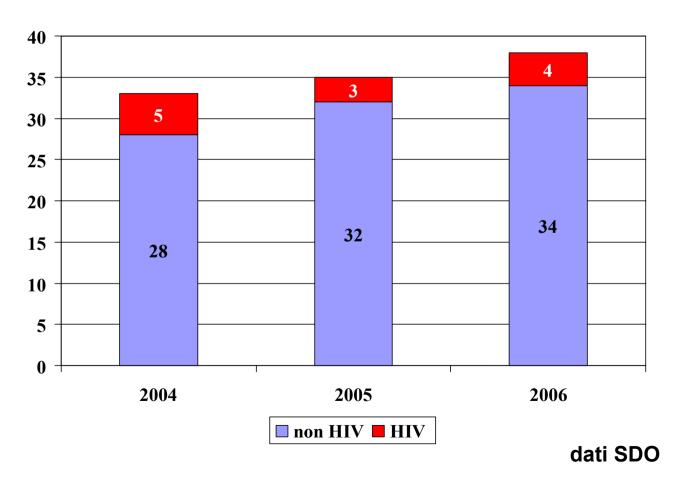

- At the end of 2007
 - Approximately 2 billion people infected with Mycobacterium tuberculosis
 - Approximately 33 million people infected with HIV
 - **▶** 10-15 million people coinfected with HIV and TB
 - Approximately 2 million HIV-related deaths
 - Up to 50% of those were HIV/TB-coinfected individuals

Estimated Numbers Of New TB Cases 2006



Estimated TB Incidence Rates 2006

Estimated HIV Prevalence In New TB cases 2006



Studio GISTA-SIMIT : Studio Prospettico, Multicentrico, Condotto in Italia nel 1999-2000 in Pazienti HIV con TB

Età (media)	37 (21-36)
Sesso (M)	271 (81,3%)
Nazionalità italiana	178 (65,4%)
Fattore rischio HIV	
• IVDU	130 (47.8%)
Rapporti eterosessuali	76 (27,9%)
• MSM	39 (14,4%)
• Altro	27 (9,9%)
CD4 cell x 10 ⁵ /l (media)	120 (0-1111)
Localizzazione TB	
• polmonare	151 (55,5%)
Polmonare + extra-polmonare	69 (25,4%)
• Extra-polmonare	52 (19,1%)
Precedente episodio di TB	44 (16,2%)
Precedente trattamento con INH per LTIB	4 (1,5%)

Interactions Between HIV and TB

- HIV has a negative impact on TB disease:
 - increased risk for active TB from exogenous infection
 - increased risk for latent TB reactivation
 - accelerated progression of active TB
- TB infection has a negative impact on HIV disease:
 - significant increase in plasma HIV viremia
 - generalized immune activation
 - • ↑ expression of the HIV CCR5/CXCR4 coreceptors

Important Issues in HIV/TB

- Impact of HAART
- Clinical manifestations
- Treatment
- IRIS

Important Issues in TB/HIV Impact of HAART

- HAART reduces, but not eliminate the risk of developing TB.
- The greatest risk factor for the development of TB on HAART is the pretreatment level of baseline CD4 cell count, and those at 6 months after HAART initiation.
- Patients on HAART tend to have classic radiographic findings compared with patients who have not received HAART, who may have a more unusual presentation.
- HAART increases the frequency of PPD conversion rates.
- HAART decreases TB related mortality.
- Functional restoration of CD4+ T cells can lead to immune reconstitution syndromes with a wide spectrum of clinical manifestations.

HAART Decreases Overall TB Risk

TB risk in 1st 3 months of HAART is high

Months HAART	TB/100 p-y ¹	TB/100 p-y ²	TB/10	0 p-y ³
0-3	1.3	23.0	10.7	1.7
4-6	0.8	10.7	7.5	1.0
7-12	0.5	7.0	5.2	0.6

1. Girardi E. CID 2005. Europe, North America 2. Lawn SD. AIDS 2006. South Africa 3. Brinkhof MW. CID 2007. Developing countries + developed countries

Incidence of Tuberculosis after HAART

Table 2. Incidence of tuberculosis per 1000 person-years of follow-up (PYFU) during the first 3 years after HAART initiation according to baseline characteristics, Antiretroviral Therapy Cohort Collaboration, 1996–2003. (Europe, Nord America)

Baseline characteristic	No. of cases of tuberculosis	No. of PYFU	Incidence rate of tuberculosis, cases per 1000 PYFU (95% CI)
Duration of HAART, months			
0–3	55	4208	13.1 (9.6–1.7)
4–6	30	3852	7.8 (5.0–10.6)
7–12	34	7322	4.6 (3.1-6.2)
13–24	40	12,210	3.3 (2.3–4.3)
25–36	14	9314	1.5 (0.8–2.5)

Girardi, E. et al. Clin Infect Dis 2005; 41:1772

Incidence of Tuberculosis after HAART Stratified By CD4+ Cell

Table 4. Incidence of tuberculosis (TB) occurring ≥6 months after HAART initiation, stratified by CD4+ cell count and HIV RNA level as measured at HAART initiation and at 6 months after HAART initiation, Antiretroviral Therapy Cohort Collaboration, 1996–2003.

Variable	No. of cases of TB	No. of PYFU	No. of cases of TB per 1000 PYFU (95% CI)
CD4+ cell count, cells/μL			
At HAART initiation			
<50	18	1961	9.2 (5.4–14.5)
50–199	24	6792	3.5 (2.1–5.0)
200-349	27	8771	3.1 (1.9-4.2)
350-499	11	6552	1.7 (0.8–3.0)
≥500	8	4770	1.7 (0.7–3.3)
At 6 months after HAART initiation			
<50	6	303	19.8 (7.3-43.2)
50–199	25	3668	6.8 (4.1–9.5)
200-349	19	6108	3.1 (1.9-4.9)
350-499	16	6613	2.4 (1.4-3.9)
≥500	12	9551	1.3 (0.7-2.2)

Girardi, E, et al. Clin Infect Dis 2005; 41:1772

Important Issues in TB/HIV Clinical Manifestations

- The symptoms seen in HIV patients with TB are usually similar to those in other patients with TB.
- The diagnosis should be suspected not only in patients with pulmonary symptoms, but also in those with weight loss, fever of unknown origin, or malaise.

Extrapulmonary Disease

- HIV patients with TB have a higher incidence of extrapulmonary and pleural disease.
- The risk of extrapulmonary TB is greater in patients with advanced immunosuppression.
- The most common sites of extrapulmonary involvement are blood, extrathoracic lymph nodes, bone marrow, genitourinary tract and the central nervous system.

Frequency of Various Clinical, Laboratory, and Radiographic Features of HIV-Associated Tuberculosis (TB) in Patients Whose CD4+ Cell Counts were < 200 And > 201/ml

97 HIV-infected patients with tuberculosis

Feature	CD4+ cel	p	
	<200/µl	>201/µ1	-
Extrapulmonary TB, %	63	35	< 0.01
Mycobacteremia, %	40	4	< 0.01
Positive acid-fast smear, %	75	53	=0.03
Positive skin test, %	31	65	< 0.02
Mediastinal adenopathy, %	36	13	=0.02
Pleural effusion, %	10	27	=0.05

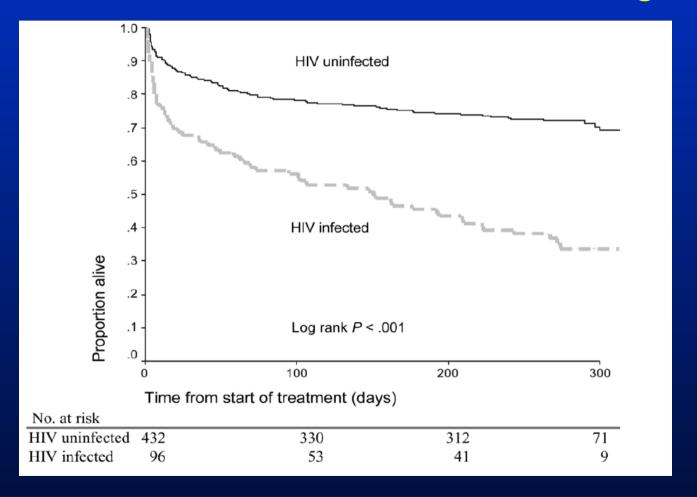
Data modified from Jones et al. Am Rev Respir Dis 1993; 148:1292

Tuberculous Pleurisy is More Common in AIDS Than in Non-AIDS Patients with Tuberculosis

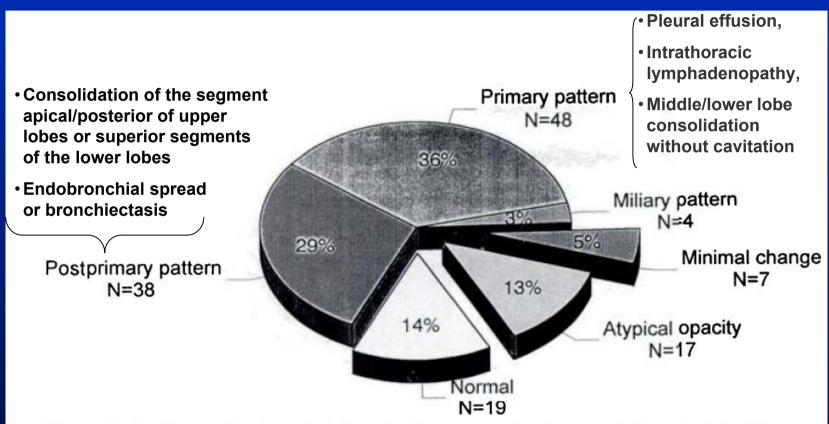
A case-control study of approximately 3000 patients with tuberculosis with pleural involvement performed in South Carolina from 1988 through 1994.

Main results:

- 11% (22/202) of the AIDS patients with tuberculosis had pleural involvement v.s. 6% (169/2,817) in non-AIDS patients (p=0.01).
- Associated features of AIDS tuberculous pleurisy:
 - substantial weight loss (7.65 ±1.35 kg)
 - lower lobe infiltrates (12/22; 55%).


Tuberculous Meningitis is Associated with Decreased Survival in HIV Patients

Prospective study in 528 adults (96 HIV, 432 non HIV) with tuberculous meningitis


Main results:

- Similar neurological presentation between HIV and non HIV patients
- Extrapulmonary TB manifestation more frequent in HIV patients
- The 9-month survival rate significantly decreased in HIV patients: RR of death = 2,91 (95% CI 2.14– 3.96)

Survival Estimates in 96 HIV-Infected and 432 HIV-Uninfected Patients with Tuberculous Meningitis

Active Pulmonary Tuberculosis in Patients with AIDS: Spectrum of Radiographic Findings

Figure 6. Radiographic characteristics of culture-proved pulmonary tuberculosis in 133 patients with AIDS.

Active Pulmonary Tuberculosis In Patients With AIDS: Spectrum Of Radiographic Findings.

Table 2
Correlation in AIDS Patients with Pulmonary Tuberculosis Based on CD4 T-cell
Counts

A. Normal and Abnormal Radiographic Findings

CD4 T-cell Count	Total No.	Radiographic Findings*		
(cells per microliter)		Normal	Abnormal	
< 200	48	10 (21) [†]	38 (79)	
> 200	20	1 (5) [†]	19 (95)	

B. Postprimary and Other Radiographic Patterns

CD4 T-cell Count	Total No.	Radiographic Pattern*		
(cells per microliter)	of Patients	Postprimary	Other	
< 200	48	11 (23) [‡]	37 (77)	
> 200	20	11 (55)‡	9 (45)	

Numbers in parentheses are percentages.

 $^{^{\}dagger} P < .05.$

P < .001

HIV Status is the Most Significant Predictor of an Abnormal Radiographic Appearance

Retrospective analysis of 456 TB patients (191 HIV seropositive) treated at a New York City hospital between 1990 and 1999.

Table 3. Association Between Radiographic Features and HIV Status Across Strata of Cluster Status

		No. (%) o Isolates (No. (%) of Clustered Isolates (n = 193)				P Value for Breslow-Day Test	
Characteristic	No.	HIV Negative	HIV Positive	OR (95% CI)*	No.	HIV Negative	HIV Positive	OR (95% CI)†	for Heterogeneity Across Strata of Cluster Status
Cavitary lesion	47	34 (40.0)	13 (17.6)	0.32 (0.15-0.67)	47	31 (40.8)	16 (13.7)	0.23 (0.11-0.46)	.53
Upper lobe infiltrate	99	63 (74.1)	36 (48.7)	0.33 (0.17-0.64)	100	59 (77.6)	41 (35.0)	0.22 (0.14-0.36)	.11
Lymphadenopathy	37	13 (15.3)	24 (32.4)	2.66 (1.24-5.71)	55	14 (18.4)	41 (35.0)	2.39 (1.19-4.78)	.84
Effusion	34	20 (23.5)	14 (18.9)	0.76 (0.35-1.63)	32	8 (10.5)	24 (20.51)	2.19 (0.92-5.1)	.07
Effusion only	7	3 (3.61)	4 (6.45)	1.83 (0.40-8.53)‡	10	1 (1.41)	9 (11.25)	8.87 (1.09-71.9)§	.21
Lower or middle lung infiltrate	68	39 (45.9)	29 (39.2)	0.76 (0.40-1.43)	74	27 (35.5)	47 (40.2)	1.21 (0.67-2.22)	.29
Miliary	9	3 (1.89)	6 (8.1)	2.41 (0.58-10.0)‡	10	5 (6.58)	5 (4.27)	0.63 (0.18-20.27)‡	.16
Multilobar	71	41 (48.2)	30 (41.1)	0.75 (0.40-1.40)	82	38 (50.0)	44 (37.6)	0.60 (0.34-1.08)	.62
Typical	99	63 (74.1)	36 (48.7)	0.33 (0.17-0.94)	100	59 (77.6)	41 (35.0)	0.16 (0.08-0.30)	.11

Abbreviations: CI, confidence interval; HIV, human immunodeficiency virus; OR, odds ratio.

^{*}Compares the association between radiographic variables and HIV status among persons with unique isolate.

[†]Association between radiographic variable and HIV status among persons with clustered isolate.

[‡]P>.05 by Fisher exact test.

[§]P<.05 by Fisher exact test.
</p>

Intrathoracic Adenopathy Associated with TB/AIDS

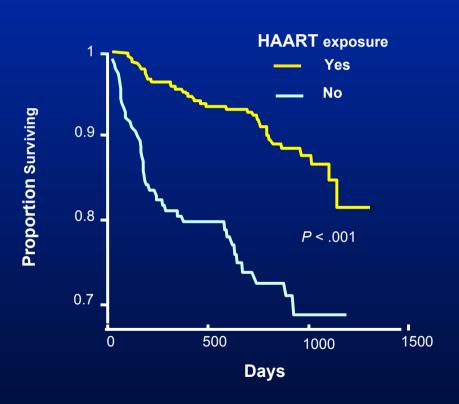
- Characteristic appearance on CT: the lymph nodes appear hypodense relative to soft tissue, and the rim is enhanced with contrast.
- This finding is not pathognomonic of TB (occasionally seen in Kaposi's sarcoma and lymphomas), but it is sufficiently characteristic that empiric therapy should be started pending results of cultures.

Intrathoracic Adenopathy Associated with TB/AIDS

Pastores SM, et al. Chest 1993; 103:1433.

Important Issues in TB/HIV Treatment

- When to start HAART in TB/HIV patients
- Drug interactions
 - Rifampin +
 - Protease inhibitors (PI)
 - > 90%
 ↓ in PI levels generally precludes use of PIs
 - NNRTI
 - Efavirenz, nevirapine
 - Newer agents
 - Raltegravir, Maraviroc: no data
 - http://www.cdc.gov/tb/TB_HIV_Drugs/default.htm
 - Updated May 18, 2008
- Integration of TB and HIV care
 - Havlir D. JAMA 2008;300:423-30.
- Optimal duration of TB treatment


THRio Cohort HAART Initiation after TB Diagnosis Improves Survival

THRio Cohort
 No significant difference in survival rate between patients starting HAART

≤ 60 days

61-180 days

> 180 days

Saraceni V, et al. IAC 2008. Abstract MOAB0305. Reprinted with permission.

Reduced Mortality after First 3 Mos of ART in Developing Countries

ART-LINC dataset^[1] (N = 2725 with active follow-up)

- Botswana National HIV

 Treatment Program^[2]

 (N = 53,423 with adequate follow-up data)
- 47.8% of patients who died received HAART for < 3 mos</p>
- If patients survived > 3 mos, 94.3% likelihood of survival for > 5 yrs

- 1. Braitstein P, et al. Lancet. 2006;367:817-824
- 2. Puvimanasinghe JP, et al. IAC 2008. Abstract MOAB0204

Conflicting Data on Timing of HAART Initiation after Starting TB Therapy

- Iran study (N = 69)^[1]: HAART initiated early (at 2 weeks of TB therapy if CD4+ count ≤ 100, at 8 weeks if CD4+ count 101-200) vs late (at 8 weeks if CD4+ count > 200)
 - Significantly higher TB cure rate with early HAART (P = .002)
 - Significantly lower death rate within 12 mos with early HAART (P = .028)
- Argentina study (N = 142)^[2]: HAART initiation early (within
 - 8 weeks of starting TB therapy) vs late (after 8 weeks)
 - Significantly higher TB cure/treatment completion rate with late HAART (71% vs 88%; P = .035)
 - Significantly lower death rate with late HAART (14% vs 7%; P = .013)

HIV/TB HAART Mortality: Malnutrition & Advanced HIV Disease, not Timing

Mortality With HAART, TB vs Non-TB	Crude Incidence Rate Ratio	Adjusted Incidence Rate Ratio*
All patients	1.69	0.94
Stratified by Time Between TB Treatment and HAART Initiation		
• ≤ 30 days (n = 331)	2.04	0.97
• 30-60 days (n = 286)	1.64	0.80
• 60-120 days (n = 311)	1.36	0.93
• > 120 days (n = 274)	1.71	1.11

^{*}Adjusted for advanced HIV disease, malnutrition, low hemoglobin.

 Nearly 6-fold higher risk for mortality among HIV/TB-coinfected patients with both lower BMI and short duration between TB treatment initiation and HAART initiation

Therapy for Susceptible Active TB

- Although most HIV-infected patients can be successfully treated with standard six-month treatment regimens, longer courses of treatment are indicated for some patients:
 - patients with cavitary disease who remain smearpositive after two months of induction therapy,
 - patients with CNS or skeletal involvement
- TB therapy are the same as in patients without HIV, including four-drug therapy in most cases
- Issues related to drug interactions, immune status, and prevention of resistance must also be considered before initiating therapy

Treatment Regimens for Tuberculosis

Table 1. Treatment Regimens for Patients with Tuberculosis, According to HIV Status.*

DRUG RESISTANCE	PATIENTS WITHOUT HIV INFECTION	PATIENTS WITH HIV INFECTION	ANTIRETROVIRAL THERAPY
None	IRPE for 2 mo, IR for 4 mo†	IRPE for 2 mo, IR for 4–7 mo‡ or	No protease inhibitors or NNRTIs can be used with rifampin§
		IPE plus rifabutin for 2 mo, I plus rifabutin for 4–7 mo	Rifabutin can be used with indinavir or nelfinavir but not with saquinavir, ritonavir, or NNRTIs
Isoniazid	RPE for 6 mo	RPE for 6–9 mo¶ or	No protease inhibitors or NNRTIs can be used with rifampin
		rifabutin plus PE for 6–9 mo	Rifabutin can be used with indinavir or nelfinavir but not with saquinavir, ritonavir, or NNRTIs
Rifampin	IPE for 18-24 mo	IPE for 18–24 mo or	All antiretroviral drugs can be used
		IPSE for 2 mo, IPS for 7-10 mo	All antiretroviral drugs can be used

^{*}Recommendations are based on those of the American Thoracic Society,30 the Centers for Disease Control and Prevention,31 and expert opinion. I denotes isoniazid, R rifampin, P pyrazinamide, E ethambutol, NNRTI non-nucleoside reverse-transcriptase inhibitor, and S streptomycin.

Recommendations for Regimens for the Concomitant Treatment of Tuberculosis and HIV Infection

Combined regimen for treatment of HIV and tuberculosis	PK effect of the rifamycin	Tolerability / toxicity	Antiviral activity when used with rifampin	Recommendation(comm ents)
Efavirenz-based antiretroviral therapy* with rifampin-based TB treatment	Well-characterized, modest effect	Low rates of discontinuation	Excellent	Preferred (efavirenz should not be used during the first trimester of pregnancy)
PI-based antiretroviral therapy* with rifabutin- based TB treatment	Little effect of rifabutin on PI concentrations, but marked increases in rifabutin concentrations	Low rates of discontinuation (if rifabutin is appropriately dose-reduced)	Favorable, though published clinical experience is not extensive	Preferred for patients unable to take efavirenz †
Nevirapine-based antiretroviral therapy with rifampin-based TB treatment	Moderate effect	Concern about hepatotoxicity when used with isoniazid, rifampin and pyrazinamide	Favorable	Alternative for patients who cannot take efavirenz and if rifabutin not available
Zidovudine / lamivudine / abacavir / tenofovir with rifampin-based TB treatment ¹⁰	50% decrease in zidovudine, possible effect on abacavir not evaluated	Anemia	No published clinical experience	Alternative for patients who cannot take efavirenz and if rifabutin not available
Zidovudine / lamivudine / tenofovir with rifampin- based TB treatment	50% decrease in zidovudine, no other effects predicted	Anemia	Favorable, but not evaluated in a randomized trial	Alternative for patients who cannot take efavirenz and if rifabutin not available
Zidovudine / lamivudine / abacavir with rifampin- based TB treatment	50% decrease in zidovudine, possible effect on abacavir not evaluated	Anemia	Early favorable experience, but this combination is less effective than efavirenz- based regimens in persons not taking rifampin	Alternative for patients who cannot take efavirenz and if rifabutin not available
Super-boosted lopinavir- based ART with rifampin- based TB treatment	Little effect	Hepatitis among healthy adults, but favorable experience, among young children (< 3 years)	Good, among young children (< 3 years)	Alternative if rifabutin not available; preferred for young children when rifabutin not available

ART=antiretrovirol therapy

^{*} with 2 nucleoside analogues

[†] includes patients with NNRTI-resistant HIV, those unable to tolerate efavirenz, women during the first 1-2 trimesters of pregnancy

Drug Interactions

Table 1. Pharmacokinetic drug interactions between rifampin (RIF), rifabutin (RIB), protease inhibitors (PIs), and nonnucleoside reverse-transcriptase inhibitors (NNRTIs).

Drug	Interaction with RIF	Recommendation for concurrent ARV use with RIF ^a	Interaction with RIB	Recommendation for concurrent ARV use with RIB	RIB dose adjustment
Pls					
RTV	RTV ↓ 35%	No dose adjustment	RIB † 435%	No dose adjustment	150 mg 3× per week
IDV	IDV ↓ 89%	Avoid	IDV ↓ 32%; RIB ↑ 204%	IDV 1000 mg t.i.d.	150 mg daily or 300 mg 3× per week
SQV	SQV ↓ 84%	Avoid SQV (400 mg) + RTV (400 mg) b.i.d.; may be effective but is hepatotoxic in healthy volunteers; monitor liver function closely	SQV ↓ 40%	Avoid unboosted SQV	
NFV	NFV ↓ 82%	Avoid	NFV (1250 mg b.i.d. ^b) ↔; RIB↑207%	NFV 1250 mg b.i.d.	150 mg daily or 300 mg 3× per week
APV, f-APV	APV ↓ 82%	Avoid	APV ↓ 15%; RIB ↑ 193%	No dose adjustment	150 mg daily or 300 mg 3× per week
ATV	Predicted significant ATV ↓	Avoid	RIB † 250%	No dose adjustment	150 mg daily or 150 mg 3× per week
RTV-boosted ^c		Avoid		No dose adjustment	150 mg 3× per week
RTV-boosted LPV (Kaletra)	LPV ↓ 75%	Avoid LPV/rtv + RTV (300 mg b.i.d.): monitor liver function closely	RIB † 303%	No dose adjustment	150 mg 3× per week
NNRTIs					
NVP	NVP 1 20%-55%	No dose adjustment; safety and efficacy not established; monitor liver function closely	NVP ↓ 16%	No dose adjustment	No dose adjustment
EFV	EFV ↓ 25%	Consider EFV ↑ to 800 mg daily in patients >60 kg	EFV ↔; RIB ↓ 35%	No dose adjustment	450–600 mg daily or 600 mg $3\times$ per wee
DLV	DLV 1 96%	Avoid	DLV ↓ 80%; RIB ↑ 100%	Avoid	

NOTE. Adapted from [10]. Percentage values are changes in area under the concentration-time curve: ↑, increase; ↓, decrease; ↔, no change. APV, amprenavir; ARV, antiretroviral; ATV, atazanavir; b.i.d., twice daily, DLV, delavirdine; EFV, efavirenz; f-APV, fosamprenavir; IDV, indinavir; LPV, lopinavir; LPV/rtv, ritonavir-boosted LPV; NFV, nelfinavir; NVP, nevirapine; RTV, ritonavir; SQV, saquinavir, t.i.d., 3 times daily.

^a Rifampin levels are not significantly affected by PI or NNRTI coadministration; therefore, no rifampin dose adjustment is required.

^b NFV (750 mg t.i.d.) should not be used with RIB. ^c SQV, APV/f-APV, IDV, or ATV.


Important Issues in TB/HIV TB-IRIS

- Paradoxical deterioration on TB treatment
- "Unmasking" of untreated TB

PARADOXICAL TB-IRIS

TB-IRIS Paradoxical Reactions

- Incidence: 8-45%
- Median 2 4 weeks after ART initiation
- Risk factors
 - Shorter interval between TB treatment and ART initiation
 - Disseminated TB
 - Low baseline CD4 and high baseline VL
 - Vigorous CD4/VL response to ART
- Life threatening complications described but mortality rare

Complications of Antiretroviral Therapy in Patients with Tuberculosis: Drug Interactions, Toxicity, and Immune Reconstitution Inflammatory Syndrome

Table 3. Tuberculosis (TB) immune reconstitution inflammatory syndrome (IRIS) paradoxical responses: clinical case series that have reported on ≥8 patients.

Study	IRIS incidence, no. of cases/ total patients (%)	Interval between HAART and IRIS, median or mean (range), days	Duration of IRIS, median (range), days	Significant association(s)
Breen et al. [84] ^a	8/28 (29)	11 (8–18)	NR	Starting HAART within 6 weeks of TB diagnosis
Breton et al. [75]	16/37 (43)	12 (2–114)	NR	Increase in CD4 cell %; increase in CD4/CD8 cell count ratio; disseminated TB
Burman et al. [85]	25/137 (18)	NR	64 (IQR, 44-99)	Extrapulmonary TB; early initiation of HAART
Kumarasamy et al. [86]	11/144 (8)	42 (10-89)	NR	NR
Michailidis et al. [87] ^b	14/55 (26)	15°	76 (0.53–14.97)	Low baseline CD4 cell count; disseminated TB; CD4 cell count increase while receiving HAART
Narita et al. [81]	12/33 (36)	15	20 ^d	PPD conversion
Olalla et al. [88] ^e	9/33 (27)	18 (3–210)	57 (19 to >395)	Greater decrease in VL; lower CD4 cell count at 6 months
Shelburne et al. [89] ^f	26/86 (30)	46 (3–658)	NR	Shorter interval for starting HAART; more rapid initial decrease in VL

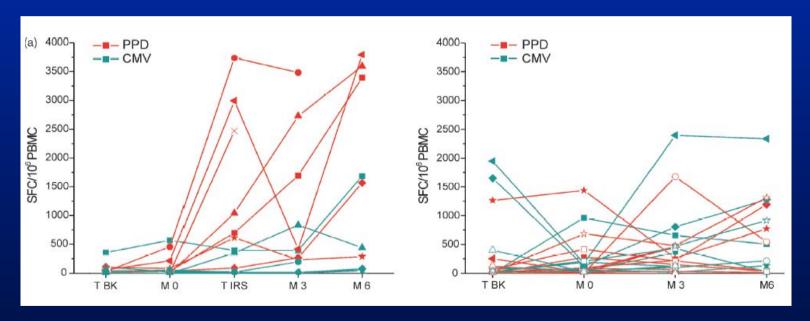
NOTE. HAART, highly active antiretroviral therapy; IQR, interquartile range; NR, not reported; PPD, purified protein derivative; VL, viral load.

Challenges In Diagnosis No Diagnostic Test; Diagnosis Of Exclusion

ADDITIONAL DIAGNOSIS

Bacterial infections Fungal infections NTM infections Malignancies

DRUG RESISTANCE


13/141 in Cape Town cohort of TB-IRIS suspects had MDR or Rifampicin monoresistant

DRUG REACTION

Drug fever vs TB-IRIS fever Hepatic involvement

Explosion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients

Anne Bourgarit^{a,b}, Guislaine Carcelain^a, Valerie Martinez^a, Caroline Lascoux^b, Veronique Delcey^c, Brigitte Gicquel^d, Eric Vicaut^e, Philippe H. Lagrange^f, Daniel Sereni^b and Brigitte Autran^a

IRIS +

IRIS -

Case Definition

- Diagnosis of HIV and TB WHO criteria
- Response to TB treatment improved/stabilised
- On ART
 - Response documented by >1 log decrease in HIV RNA, though seldom available
- Onset within 3 mo (up to 6) of starting/changing ART
- Exclusion of alternative explanation
 - TB treatment failure due to drug resistance
 - Another opportunistic infection or neoplasm
 - Drug toxicity or reaction
 - Complete non-adherence to ART

Case Definition Clinical Criteria

Major

- 1) New/enlarging lymph nodes, cold abscesses or other focal tissue involvement
- 2) New/worsening radiological features of TB
- 3) Breakthrough TB meningitis or new/enlarging focal CNS lesion
- 4) New or worsening serositis

Minor

- 1) Constitutional symptoms- e.g., fever, night sweats
- 2) Respiratory symptoms e.g., cough, dyspnea, stridor
- 3) Abdominal pain and/or hepatomegaly
- 4) Resolution of clinical and/or radiological findings without change in TB treatment

1 major or 2 minor

Treatment Corticosteroids

- Case reports documenting response
- Potential complications
 - KS, herpes reactivations and other side effects
- Many cases self-limiting
- Dose and duration?

Delaying ART Initiation in Patients Diagnosed with TB?

PRO

- It may be prudent to delay the initiation of antiretroviral therapy for two months in order to avoid a paradoxical worsening of TB due to immune reconstitution.
- Delaying HAART can also decrease the risk of overlapping drug adverse effects and interactions.

CON

Delaying HAART in patients with advanced immunosuppression may increase the risk of opportunistic infections and death.

Optimal Timing of ART Initiation in Those on TB Treatment?

IRIS; overlapping adverse events and interactions progression and death

Outcome of HIV-Associated Tuberculosis in the Era of Highly Active Antiretroviral Therapy

Retrospective study comparing outcomes between 36 patients starting TB treatment during the pre-HAART and 60 patients starting in the post-HAART era.

Main Results

- At a median follow-up of 3.6 years, one-half of all deaths or new AIDS-defining illnesses occurred within the first two months of TB treatment in the approximately one-third of patients with a CD4+ counts below 100/microL at baseline.
- In contrast, only 15 percent of such events occurred in the first two months in patients with higher CD4+ counts.
- HAART use was associated with a marked and significant decrease in the risk of death (adjusted HR 0.18) or a new AIDS-defining illnesses (adjusted HR 0.38).
- Most deaths were due to HIV-related causes not to TB complications

Dheda K, et al. J Infect Dis 2004; 190: 1670

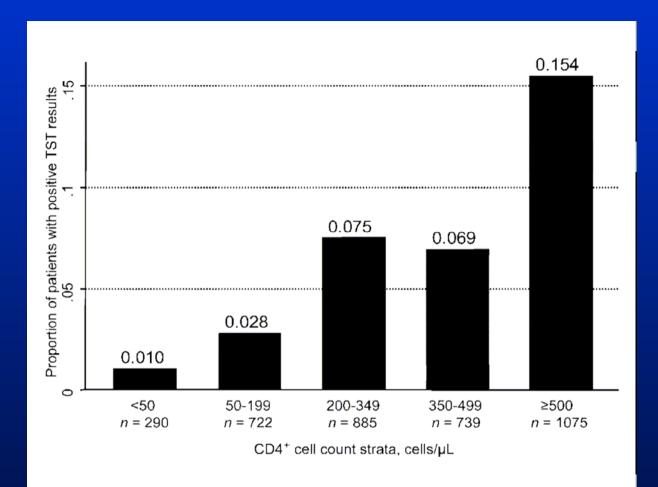
"UNMASKING" TB-IRIS

"Unmasking" TB-IRIS in Developing Country Settings

- High rates of incident TB in the period after ART initiation
 - 17.6/100 person years (Bonnet 2006)
 - 23/100 person years in first 90 days (Lawn 2006)
- Cases of accelerated TB (John 2006)
- Background of high TB incidence in those not on ART
- Unclear extent of role IRIS plays in the presentation of incident TB early after ART initiation

Important Issues in TB/HIV Prevention

- Antiretroviral therapy
- Treatment of M. tuberculosis infection
 - Isoniazid
- Both antiretroviral therapy + isoniazid
 - Golub J. AIDS 2007;21:1441-8.
- Post-TB treatment isoniazid
- BCG vaccination


LTBI

- HIV infection carries a high risk for progression to active disease so LTBI therapy is recommended for all PPD-positive, HIV-infected patients, regardless of age.
- In addition, the risk is considered so great that the threshold for interpreting a PPD as positive is the presence of 5 mm or more of induration 48 to 72 hours after intradermal administration of 5 tuberculin units of PPD.

Tuberculin Skin Test

- Although interpretation of the tuberculin skin test in HIV patients is somewhat problematic, knowledge of the CD4 count helps to guide the approach to these patients.
- In one report of HIV-infected patients with TB, for example, a positive skin test (ie, greater than 5 mm of induration) was seen in 10 of 11 patients with a CD4 count above 300 cells/mm3 versus none of 13 with fewer than 100 CD4 cells/mm3
- A negative test, particularly in patients with CD4 counts less than 300 cells/mm3, does not rule out active or latent infection.

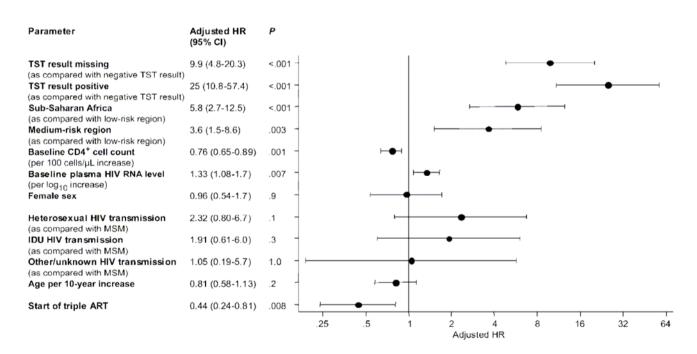

Jones BA, et al. Am Rev Respir Dis 1993; 148:1292

Figure 1. Proportion of patients with positive tuberculin skin test (TST) results according to CD4 $^+$ cell count stratum at the time of TST (P < .001 for trend statistics).

Reducing Tuberculosis Incidence By Tuberculin Skin Testing, Preventive Treatment, And Antiretroviral Therapy In An Area Of Low Tuberculosis Transmission

Retrospective study on 6160 participants the Swiss HIV Cohort Study after 1995

Figure 3. Results of a Cox proportional hazards model of developing tuberculosis during follow-up. The model included all of the variables shown. *Bars*, 95% Cl. ART, antiretroviral therapy; HR, hazard ratio; IDU, injection drug use; TST, tuberculin skin test.

Comparison of an Interferon- G Release Assay to Tuberculin Skin Testing in HIV-Infected Individuals

- 4 studies with Elispot
 - Elispot >TST
 - Lower positive results than in immunocompetents
- 1 study with QFT-G
 - Low prevalence
 - > Indetrerminate results if CD4+ < 100/mm3</p>

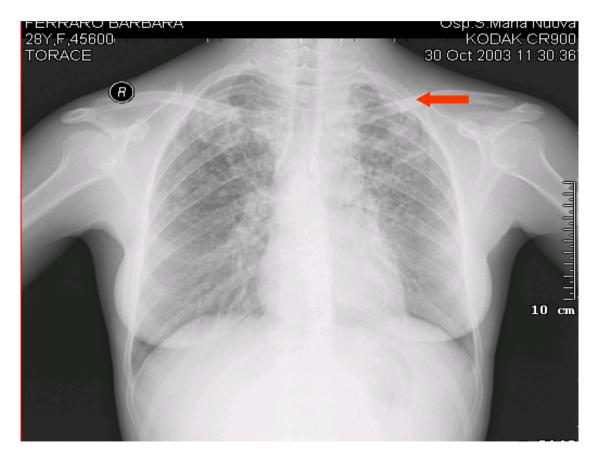
Menzies et al, Ann Intern Med. 2007; 146:340-354

Comparison Of An Interferon- g Release Assay To Tuberculin SkinTesting In HIV-Infected Individuals

- Concordance between QFT and TST was 89.3% (kappa=0.37, p=0.007).
- TST-positive/QFT-negative discordant results were found in 5.1% of subjects
- TST-negative/QFT-positive discordance in 5.6%
- Indeterminate QFT results occurred in 5.1%, all due to a failure to respond to the PHA -positive control
- Subjects with a CD4< 100 cells/mm had RR of indeterminate result of 4.24 (95% confidence interval, 1.55-11.61; p=0.003) compared with those with a CD4(+) count of 100 or more

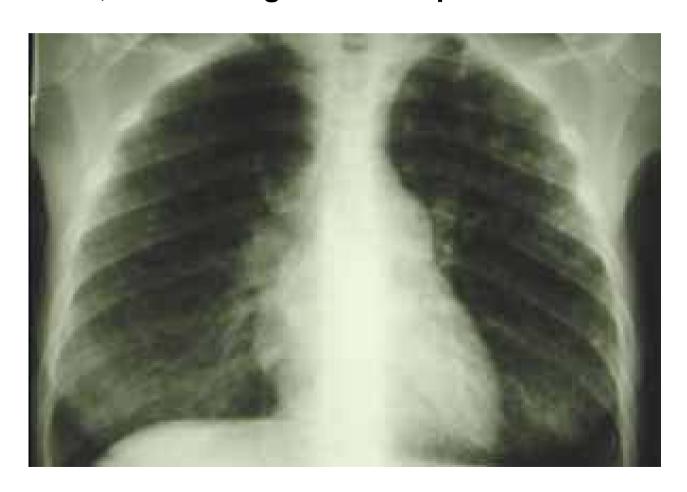
LTBI Therapy is Recommended in the Following Circumstances

- Recent contact with a patient with infectious TB, regardless of PPD status or a history of previous preventive TB treatment
- A history of prior untreated or inadequately treated prior TB, regardless of PPD status
- HIV-positive and PPD-negative persons with an unavoidable high risk of TB exposure (eg, residents of prisons of homeless shelters)

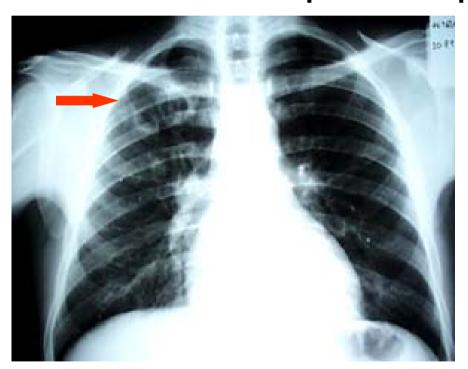

LTBI Treatment

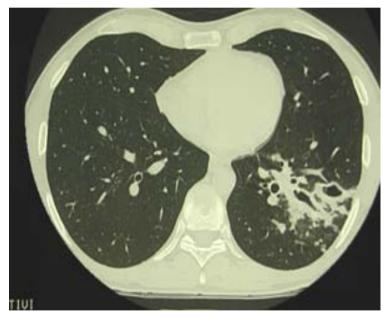
- INH (300 mg daily or 900 mg twice weekly) for a period of nine months or
- Rifampin (600 mg daily or twice weekly) for four months in patients exposed to INH-resistant, rifampin-sensitive M. tuberculosis.
- No longer recommend the combination of Rifampin plus Pyrazinamide (RZ) for any patients by ATS and CDC.

BCG Vaccination Recommendations World Health Organization

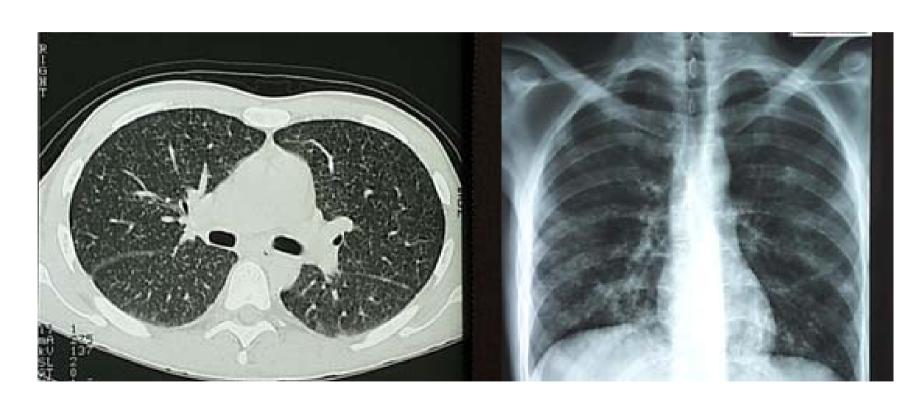

- Contraindications to BCG vaccination:
 - Persons known to be HIV-infected
 Replaces previous recommendation that asymptomatic HIV + infants should receive BCG in settings with high TB burden
 - Persons with impaired immunity
 - Persons receiving immunosuppressive treatment
 - Corticosteroids, etc
 - Pregnancy

Paziente HIV POS, CD4+ 230 /ml Escreato Positivo per *M. tuberculosis*

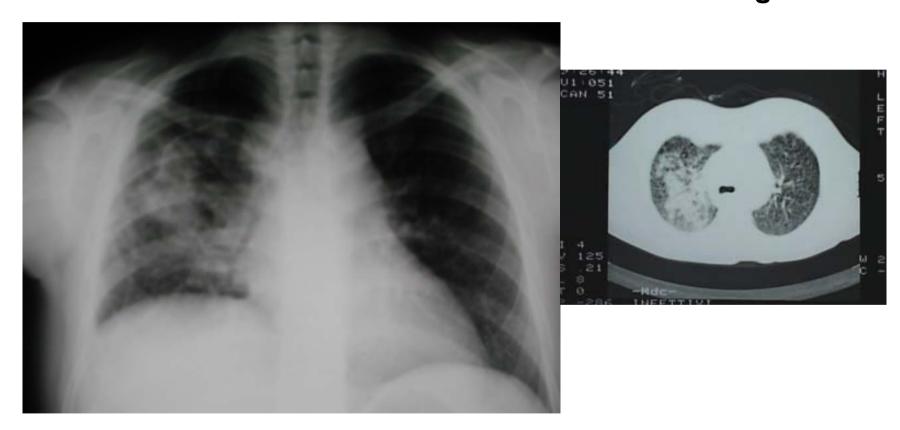



Rx torace: aspetti miliarici bi-polmonari ai campi medio superiori ed area scavata in apice sx e addensamento retroclaveare dx.

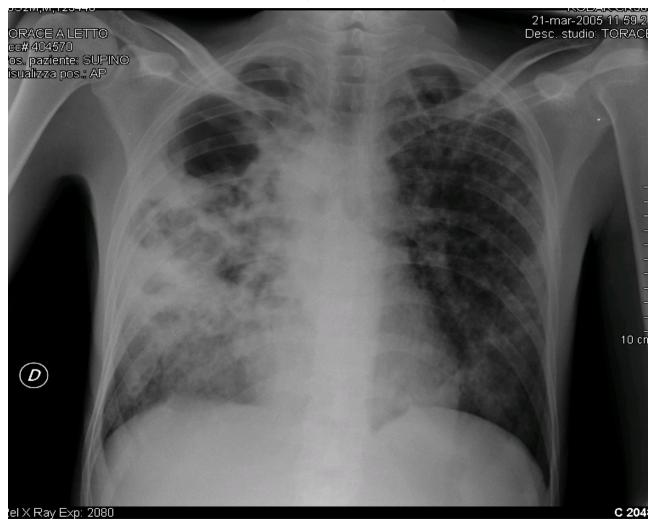
Paziente HIV POS, CD4+ 2 /ml Escreato, BAL e Sangue Positivi per *M. tuberculosis*



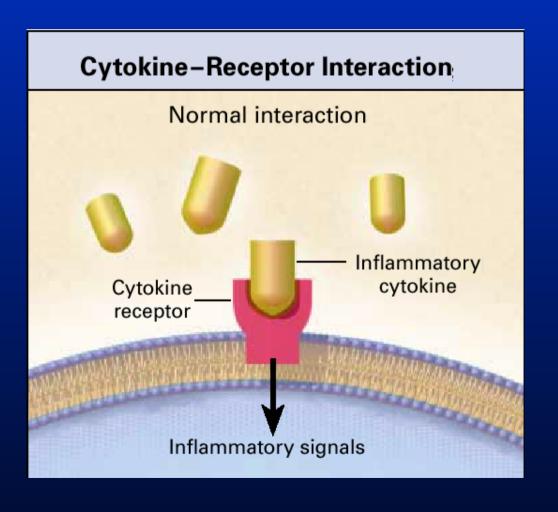
Senegalese, 20 anni, HIV POS, CD4+ 380/ml In Italia da 18 mesi Ricoverato per febbre persistente e tosse



Tossicodipendente, HIV POS, 24 anni, CD4+ 35/ml Due anni prima trattato per TB Isolamento di *M. tuberculosis* da Escreato e BAL

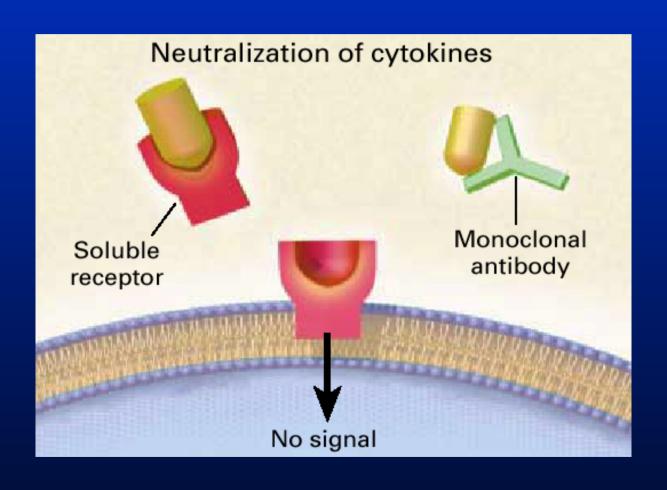

Tossicodipendente, HIV POS, CD4+ 2/ml Isolamento di *M. tuberculosis* da Escreato e Sangue

Senegalese di 35 anni, HIV POS, CD4+ 20/ml


PazientePakistano, HIV POS, CD4+ 2/ml

Decesso dopo 1 settimana

ANTI-TNF ALFA E TB


Interazione Citochine-Recettore

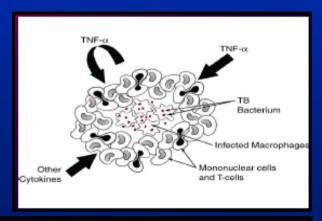
Farmaci biologici anti- α TNF

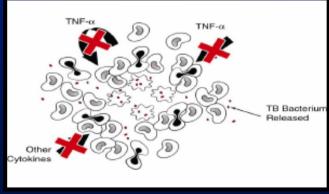
- Etanercept: proteina ricombinante di fusione tra il recettore solubile del TNF e la porzione Fc di una Ig
- Infliximab: anticorpo monoclonale anti TNF chimerico (topo-uomo)
- Adalimumab: anticorpo monoclonale anti TNF totalmente umano

Meccanismo d'azione anti-TNF

α-TNF Antagonists Characteristics

	Infliximab	Etanercept	Adalimumab
Structure	chimeric mAb	TNF lgG1 fusion protein	Human mAb
Binding target	TNF	TNF,lymphotoxin	TNF
Bindinf affinity	1,8 x 10 9	10 10	2,3 x 10 10
Half-life days	8-9,5	4-5	12-14
<i>In vitro</i> complement Mediated cell lysis		-	+
Dose	q 60 days	q 3-4 days	q 7-14 days
Efficacy in Crohn's disease	+	-	+


Rischi Correlati agli Anti α -TNF


- Tubercolosi
- Tumori (linfomi)
- Scompenso cardiaco (CHF)
- Sindromi lupus-like
- Malattie demielinizzanti

Tubercolosi ed Anti α-TNF

□ α-TNF ha un ruolo chiave nella clearance della infezione da Mycobacterium tubercolosis: → α-TNF mantiene l'omeostasi del granuloma

■ la riattivazione della TB con anti-TNF è dovuta alla incapacità del granuloma di compartimentalizzare il Mycobacterium tubercolosis

Tubercolosi ed Anti α-TNF

- 1999: infliximab (approvazione FDA)
- 2000 : infliximab (approvazione EMEA)
- Ottobre 2001 : 70 casi di tubercolosi sotto infliximab

Keane et al. N Engl J Med, vol 345, N°. 15. Oct. 11, 2001

TUBERCULOSIS ASSOCIATED WITH INFLIXIMAB, A TUMOR NECROSIS FACTOR α -NEUTRALIZING AGENT

JOSEPH KEANE, M.D., SHARON GERSHON, PHARM.D., ROBERT P. WISE, M.D., M.P.H., ELIZABETH MIRABILE-LEVENS, M.D., JOHN KASZNICA, M.D., WILLIAM D. SCHWIETERMAN, M.D., JEFFREY N. SIEGEL, M.D., AND M. MILES BRAUN, M.D., M.P.H.

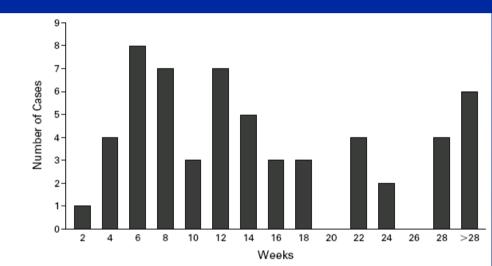
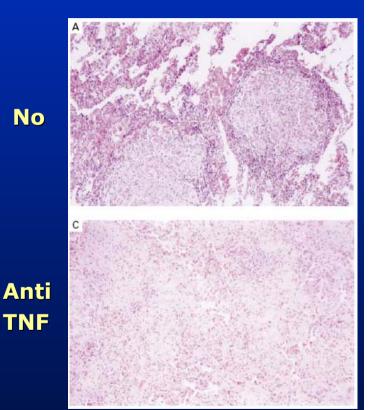



Figure 1. Time from the Initiation of Infliximab Therapy to the Diagnosis of Tuberculosis.

Data were available for 57 patients, most of whom had received monthly infusions of infliximab.

N Engl J Med, Vol. 345, No. 15 · October 11, 2001

Incidence of Tuberculosis under Etanercept and Infliximab

Table 1. Pathogens that caused granulomatous infections in US patients who received infliximab or etanercept.

Pathogen, type of infection	Infliximab group (n = 233,000)	Etanercept group (n = 113,000)	Rate ratio	P
Mycobacterium tuberculosis	335 (143.8)	39 (34.5)	4.17	<.001 ^a
Histoplasma capsulatum	39 (16.7)	3 (2.7)	6.30	<.001 ^b
Candida species				
Any	38 (16.3)	8 (7.1)	2.30	.006 ^b
NS	26 (11.2)	7 (6.2)	1.80	.065 ^b
Systemic	10 (4.3)	1 (0.9)	4.85	.046 ^b
Listeria species	36 (15.5)	2 (1.8)	8.73	<.001 ^b
Mycobacterium species (NS)	30 (12.9)	7 (6.2)	2.08	.023 ^b
Aspergillus species	29 (12.4)	10 (8.8)	1.41	.17 ^b
Cryptococcus species	11 (4.7)	8 (7.1)	0.67	.91 ^b
Nocardia species	10 (4.3)	1 (0.9)	4.85	.046 ^b
Salmonella species	7 (3.0)	4 (3.5)	0.85	.75 ^b
Toxoplasma species	5 (2.1)	0 (0)		.088 ^b
Brucella species	2 (0.9)	0 (0)		.38 ^b
Bartonella species	1 (0.4)	0 (0)		.62 ^b
Leishmania species	1 (0.4)	0 (0)		.62 ^b
Mycobacterium leprae ^c	1 (0.4)	0 (0)		.62 ^b
Overall	556 (238.6)	83 (73.5)	3.25	<.001 ^a

NOTE. Data are no. of patients (no. per 100,000 patients who received the drug). NS, species was not specified.

a By \(\chi^2\) analysis.

^b By Poisson analysis.

Resulted in leprosy.

Incidence of Tuberculosis under Etanercept and Infliximab

	Etanercept	Infliximab
N.of treated patients with RA	113,000	197,000
N. of tuberculosis	32	106
N/100,000 treated patients	28.3	53.8

Wallis, CID 2004;39:1254-55

Tuberculosis Reactivation and TNF antagonists

M.T.B.in patient with RA treated with TNF antagonists after approval of drug

	Etanercept *	Infliximab** *
No.of patient treated	230,000	277,000
Exposure Use	423,000	466,000
USA	90%	64%
EU/Norway	10%	36%
MTB reports	(38)	242
Geography		
USA	26	90
Outside USA	12	152
Time onset, mo	Median 11.20 mo	By 3 infusion: 60% By 7 months: 97%
Characteristics		,
Extrapulmonary Miliary	34% 16%	30-45% -

^{*}As of Dec 2003.** As of Oct 2003, EU: european Union

Tuberculosis Reactivation and TNF Antagonists

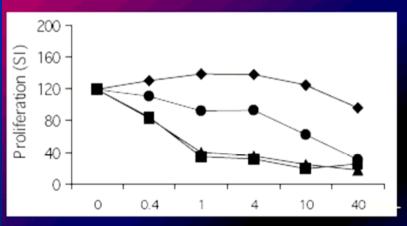
	Etanercept (Enbrel®)	Infliximab (Remicade®)	Adalimumab (Humira®)	
	Postmarketing		Clinical studies	Post marketing
Patients/years	230,000	230,000	4,900	5,566
Tuberculosis	38	173	13	1
Onset months	1-22	1-8	3-8	2
Extra- pulmonary	50%	45%	40%	NA

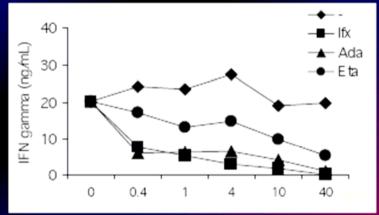
ACR Hotline 2003

Données post-marketing période Janv-Juillet 2003, patients hors études cliniques

February 2004 – 2007: Prospective registry on severe bacterial infections, opportunistic infections and lymphoma

23 tuberculosis during 20 months


Underlying disease:

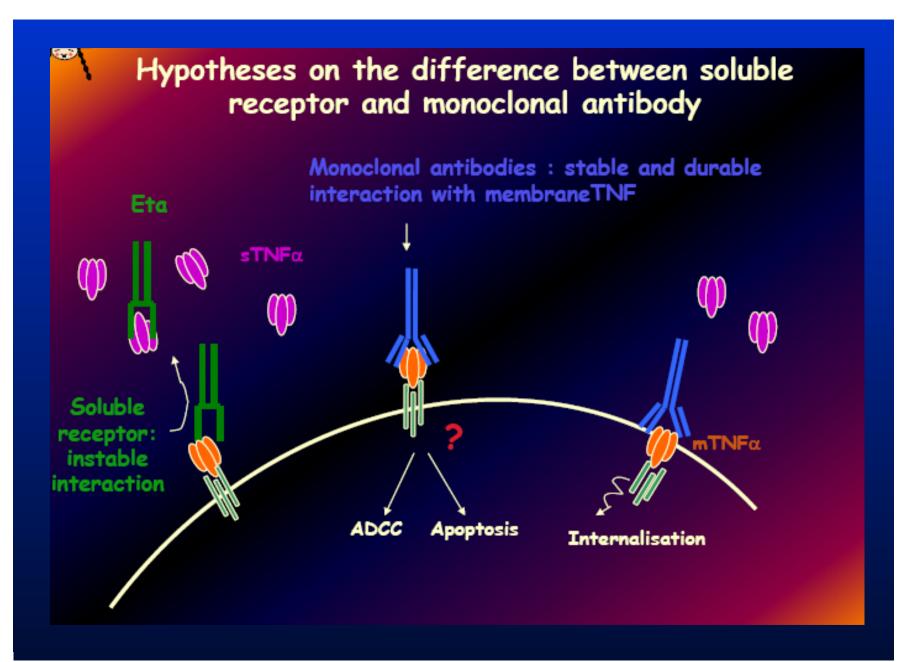

- PR: 16
- SPA: 5
- Crohn: 1
- Others: 1 (Takayashu)

Mediane time between anti-TNF onset and TB: 26 weeks Drugs involved :

- Infliximab: 10
- Adalimumab: 10
- Etanercept: 3

Effect of TNF antagonists on the activation of anti-TB T lymphocytes

Hamdi H, Arthritis ResTher 2006


Monoclonal Ab are 10 to 100 times more effective than soluble receptor for inhibiting proliferation and IFNg secretion by activated T cells stimulated with PPD

In vitro effect of TNF antagonists on anti-TB response

Impairment of activated T cells

Decrease of membrane TNF by internalization or shedding

Monoclonal antibodies >> soluble receptor

Differenze tra Infliximab ed Etanercept

- Differenze nel *meccanismo d'azione* e nella capacità di neutralizzazione del TNF
- Emivita più lunga di Infliximab (8.9 giorni vs etanercept (3.4 giorni)
- Maggior uso di Infliximab in Europa dove vi è una incidenza di fondo di TB più alta
- Aumentata frequenza di terapie combinate di Infliximab con altri immunosoppressori

Cosa Fare Prima di Utilizzare gli α-TNF Antagonisti

- Storia familiare
- Storia personale
- Rx Torace
- TST (QFT-TB)
- Se TST o QFT-TB positivi: trattamento anti TB prima di α-TNF Antagonisti
 - Isoniazide 5 mg/Kg per 6 mesi;
 - Rifampicina x 4 mesi nei resistenti

Clinical Evaluation of QuantiFERON TB-2G Test for Immunocompromised Patients

252 immunocompromised pts suspected of TB infection

```
74 cancers,
```

72 on immunosopressive treatment

52 diabetes mellitus

50 CRF

4 HIV

- QFT + = 78,1%
- TST + = 50,0%
- QFT : 13% indeterminate results
 - 28% in pts receiving immunosuppressive treatment
 - +++ if lymphocytopaenia due to severe underlying diseases

Use of the Quantiferon TB Gold Test as Part of a Screening Programme in Patients with RA under Consideration for Treatment With Anti-TNF- α Agents:the Newcastle (UK) Experience

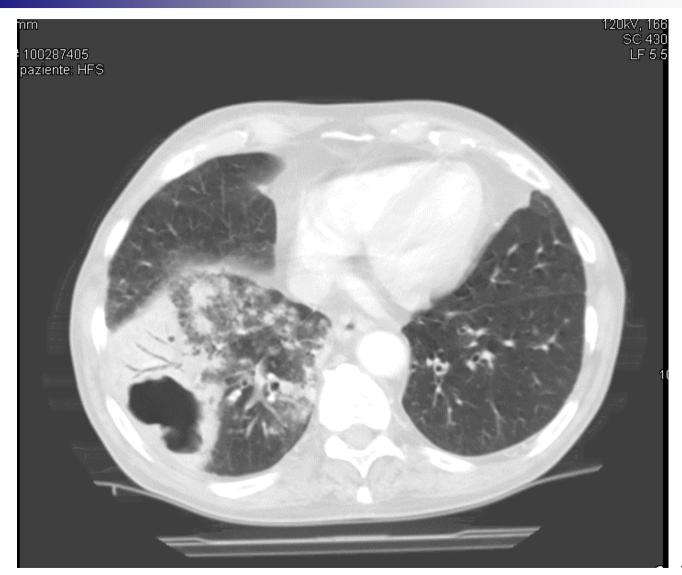
- 101 consecutive RA patients, over 2 year
- BCG status was known in 92% of the patients
- Patients were exposed to methotrexate and 40% of them to corticosteroid

CASI CLINICI Anti α -TNF e TB

Caso Clinico

Maschio, 69 anni

Aprile 2007


- Diagnosi di AR sieropositiva ad alto titolo con S. Syogren nell'aprile 2006.
- **Terapia iniziale**: idroclorochina 1 cp x 2 , prednisone 50 mg/die a scalare (sino a 4 mg), leflunomide 20 mg 1 cp al di, **adalimumab 20 mg la settimana**.

Maggio 2007

- Febbricola e tosse produttiva.
- Rx torace: ispessimento interstiziale diffuso in particolare al campo polmonare destro con addensamento parenchimale al lobo inferiore omolaterale e versamento pleurico sinistro.
- TST negativa.
- Ripetuti cicli di terapia antibiotica con ceftriaxone + claritromicina.

Giugno 2007

TAC polmonare: noduli multipli (da pochi mm a 2 cm) con aspetto escavato, grossolana lesione escavata di circa 7 cm in sede lobare inferiore destra con livello idroaereo, circondato da addensamento parenchimale con broncogramma. Modesto ingrandimento dei linfonodi ilari e paratracheali destra.

Caso Clinico

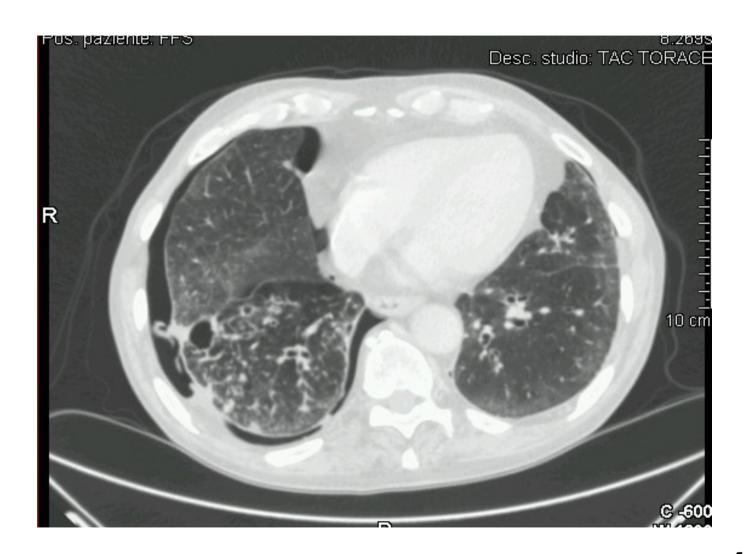
Agosto 2007

Ricovero in Reumatologia nel sospetto di una nodulosi reumatoide al polmone

- RX torace: lesioni nodulari con escavazione a destra.
- BAL: esame microscopico positivo per BAAR + LCX positiva esame colturale positivo per Micobacterium Tuberculosis

Agosto 2007

- Trasferimento presso l'UO di Malattie infettive
- Quantiferon TB (ESAT-6, CFP-10, TB 7.7) immunoenzimatico: negativo.
- **Terapia**: rifampicina (sospesa a 15 gg per esantema), isoniazide, pirazinamide (sospeso al 2 mese), etambutolo (sospeso al 6 mese per disturbi visivi), moxifloxacina e + piridossina.
- Seguito ambulatorialmente (dopo 30 gg di ricovero) sino al termine della terapia (9 mesi).


Caso Clinico

Febbraio 2008

- Comparsa pneumotorace da trazione.
- **TAC polmonare**: netta riduzione delle aree di consolidamento parenchimale, alcuni linfonodi mediastinici di circa 1 cm, falda di pnx a dx .

Maggio 2008

- Termina terapia antitubercolare.
- Escreato negativo per MTB.
- Continua follow-up clinico e microbiologico con cadenza semestrale.

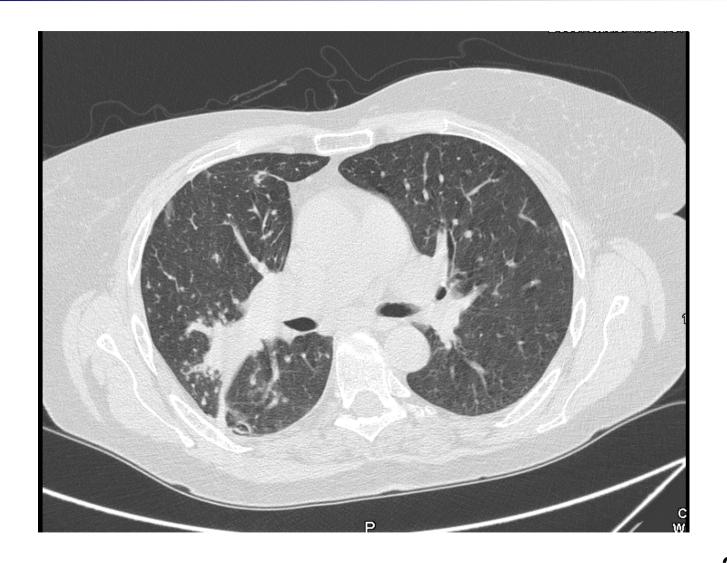
Caso clinico

Donna, 63 anni

- AR da 36 anni.
- **Terapia**: **Adalimumab** 40 mg sc ogni 2 settimane, methotrexate 10 mg la sett, deflazacort 6 mg/die.

Luglio 2007

- Ricovero presso l'Ospedale di Castel Nuovo Monti.
- Febbre persistente da 10 gg, tosse, malessere generale,
- **Rx torace**: focolaio broncopneumonico inferiore destro.
- Trattamento: ceftriaxone e levofloxacina per 14 gg.


Agosto 2007

- Persistenza della sintomatologia.
- **TAC torace**: Consolidamento parenchimale destro con aspetti di trazione all'ilo; linfodonodi di 2 cm alla loggia di Bartley ed all'arco aortico, ispessimento pleurico basale all'ascellare media ed anteriore destra con estensione alla grande scissura.
- Broncoscopia: esame microscopico diretto negativo per BAAR.

Settembre 2007

Esame colturale del BAL di agosto2007 positivo per Micobacterium Tuberculosis.

Caso clinico

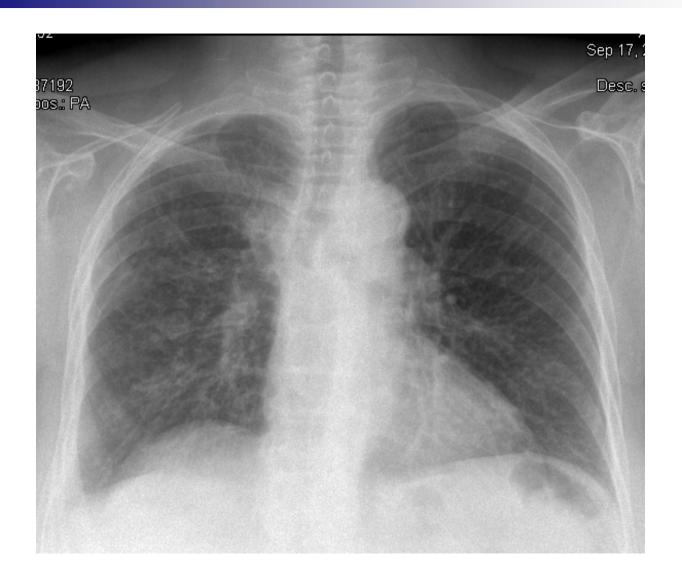
Settembre 2007

- Ricovero presso U.O. Malattie Infettive.
- Febbre (38°C), rantoli alla base polmonare destra.
- TST: negativo
- Quantiferon TB (ESAT-6, CFP-10, TB 7.7): positivo.
- Rx torace: addensamento pneumonico destro.
- Terapia antitubercolare:
 - isoniazide, etambutolo, rifampicina e pirazinamide, sospesa dopo 10 gg per epatite tossica (BT= 2,2 mg/dl, GOT =169, GPT=144, g-GT= 337 Ul/ml). Nuova terapia con etambutolo, isoniazide, streptomicina (per 2 mesi) e moxifloxacina (per 2 mesi).
- Prosecuzione terapia per AR con metotrxate + deflazacort

Dicembre 2007

- Ricovero presso l'U.O. Malattie Infettive per assunzione incongrua dei farmaci antitubercolari.
- BAAR negativi su escreato e succo-gastrico.
- Redifinizione della durata della terapia (termine previsto 30.9.2008).

10 cm



Caso clinico

Settembre 2008

- Termina trattamento antitubercolare.
- **Rx torace**: non addensamenti parenchimali a focolaio.
- Escreato negativo per BAAR.
- Prosecuzione terapia per AR con metotrexate + deflazacort.
- Prosegue follow-up clinico e microbiologico semestrale.

